Paired associative stimulation enforces the communication between interconnected areas.
نویسندگان
چکیده
Paired associative stimulation (PAS) protocols induce forms of spike-timing-dependent-plasticity (STDP) when paired pulses are repeatedly applied with different timing over interconnected cortical areas such as the posterior parietal cortex (PPC) and the primary motor cortex (M1). However, the assessment of PAS effects is usually limited to M1 through recording of motor-evoked potential (MEP) amplitude. Here, by combining transcranial magnetic stimulation (TMS) with EEG we aimed at investigating PAS effects over both areas (PPC, M1) and the modulation induced on their connectivity in humans. In different PAS conditions, PPC preceded or followed M1 TMS by 5 ms. We found that TMS-evoked potentials (TEPs) changed differently according to the long-term depression (LTD) or potentiation (LTP) after-effect assessed by MEPs, but did not vary at PPC level. Moreover, there was no change in local oscillatory power. However, there was a remarkable increase of coherence between the PPC and the M1 areas. When the PAS protocol induced LTD as revealed by MEPs, there was a specific increase of the coherence between PPC and M1 within the beta band. On the contrary, when PAS induced LTP, the coherence crucially increased in the alpha band. The same LTP results were confirmed when rotating the stimulating coil in M1 during the PAS protocol. In conclusion, we report new evidence that opposite STDP-like effects induced by corticocortical PAS are associated with increased communication between involved brain areas and that antithetic forms of STDP-like after-effects result in distinct cortical rhythms connectivity changes.
منابع مشابه
Associative properties of the perirhinal network.
The perirhinal area is a rostrocaudally oriented cortical region involved in recognition and associative memory. It receives topographically organized transverse projections from high-order neocortical areas and is endowed with intrinsic longitudinal connections that distribute neocortical inputs rostrocaudally. Earlier work has revealed that neocortical inputs strongly recruit perirhinal inter...
متن کاملBotulinum toxin injections reduce associative plasticity in patients with primary dystonia.
Botulinum toxin injections ameliorate dystonic symptoms by blocking the neuromuscular junction and weakening dystonic contractions. We asked if botulinum toxin injections in dystonia patients might also affect the integrity of sensorimotor cortical plasticity, one of the key pathophysiological features of dystonia. We applied a paired associative stimulation protocol, known to induce long-term ...
متن کاملInduction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS
Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation o...
متن کاملOn DC-Segmentation of Interconnected Power Systems
The ultimate goal of power system operation and planning is to increase power system reliability which enforces interconnected operation of power system. As a result of power system interconnection, the inter-area oscillation under different disturbances may cause power system partial or total blackout. DC-segmentation of interconnected power systems is a solution in which the topology of the n...
متن کاملEmergence of Metastable State Dynamics in Interconnected Cortical Networks with Propagation Delays
The importance of the large number of thin-diameter and unmyelinated axons that connect different cortical areas is unknown. The pronounced propagation delays in these axons may prevent synchronization of cortical networks and therefore hinder efficient information integration and processing. Yet, such global information integration across cortical areas is vital for higher cognitive function. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 34 شماره
صفحات -
تاریخ انتشار 2013